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Expressive Keypoints for Skeleton-Based Action
Recognition via Progressive Skeleton Evolution
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Abstract—In the realm of skeleton-based human action recog-
nition, the traditional methods which rely on coarse body
keypoints fall short of capturing subtle human actions. In this
work, we propose Expressive Keypoints that incorporates hand
and foot details to form a fine-grained skeletal representa-
tion, to improve the discriminative ability for existing models
in discerning intricate human actions. However, the increased
computational cost from processing nearly three times more
joints becomes a new challenge. To address this, we present
the Progressive Skeleton Evolution strategy, which significantly
improves efficiency while preserving the benefits of fine-grained
keypoints. The core idea involves utilizing learnable mapping
matrices, semantically initialized to progressively downsample
keypoints and prioritize prominent joints by allocating impor-
tance weights. Additionally, a plug-and-play Instance Pooling
module is exploited to extend our approach to multi-person
scenarios without surging computation cost. Extensive experi-
mental results over seven datasets demonstrate the superiority
of our method compared to the state-of-the-arts for skeleton-
based human action recognition. Code has been made available
at https://github.com/YijieYang23/PSE-GCN

Index Terms—Skeleton-based action recognition, graph convo-
lutional network, fine-grained representation.

I. INTRODUCTION

KELETON human action recognition has become a cor-

nerstone for numerous vision applications such as video
surveillance [1], [2], human-robot interaction [3], and sports
analytics [4], due to its succinct representation and robustness
to variations in lighting, scale, and viewpoint. Traditional
methods primarily utilize simple body keypoints defined in
NTU [5], [6] and COCO [7] formats to provide sparse rep-
resentations of human motion. Despite their utility, the over
concise representations are constrained by missing subtle but
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critical details involving hand and foot movements. Conse-
quently, existing coarse skeletal representations are limited in
effectively distinguishing intricate human actions.

Recently, some approaches [8], [9], [10] have resorted to
the point cloud representation to capture the detailed spatial
structure of human surface, thereby enhancing the ability
to recognize complex movements. However, it comes with
enormously increased computation cost, detracting from the
efficiency of point-based representation. Moreover, several
studies [11], [12], [13] have aimed to improve the recog-
nition accuracy by introducing object points. However, the
generalization of these methods is limited especially in the
human-centric scenarios where no interacted object involved.

To solve the limitations of prior works, we incorporate
richer limb keypoints into body keypoints to propose a
fine-grained representation called Expressive Keypoints. It
emphasizes nuanced hand interactions and foot movements
which are crucial to discerning subtle actions. As shown
in Fig. la, we present various data representations that are
commonly utilized. Compared to the representations of RGB
images, excessive point cloud data, and coarse body keypoints,
the Expressive Keypoints representation stands out for its
insensitivity to viewpoints, relatively small data footprint,
and ability to represent fine-grained limb details. In practice,
Expressive Keypoints can be easily estimated from RGB
images based on COCO-WholeBody [14] annotations, without
relying on obtaining depth information from multi-view data
or lab-controlled motion capture system. Experimental results
demonstrate that all three baseline methods [15], [16], [17]
achieve significant improvement in accuracy (+ over 6%) when
replacing coarse-grained keypoints with Expressive Keypoints.
However, the computation cost of directly taking Expressive
Keypoints as input also scales considerably, since nearly three
times more joints need to be dealt with. To enhance the com-
putationally efficiency, we propose the Progressive Skeleton
Evolution (PSE) strategy to gradually downsample the skeletal
representation of Expressive Keypoints across multiple stages.
This novel strategy involves the learnable mapping matrices to
refine skeleton features by re-weighting and downsampling the
keypoints. These mapping matrices are initialized by semantic
partitioning of human topology, and iteratively optimized dur-
ing training. By further introducing variable group design for
different skeletal scales, skeleton features are evenly split and
evolved before concatenation. PSE strategy enables effective
downsampling of keypoints and nuanced modeling in groups.
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Fig. 1. (a) Various representations of the action Reading and Writing. (b) Accuracy and efficiency comparison of our method and the representative methods

on NTU-60 [5] (Top) and NTU-120 [6] (Bottom).

It can be effortlessly integrated into most existing GCN-based
skeleton action recognition methods, forming our PSE-GCN
to efficiently process Expressive Keypoints. In experiments
over four standard skeleton action recognition datasets [5],
[6], [18], [19], PSE-GCN achieves comparable or even higher
accuracy with much lower (less than half) FLOPs compared
to its baseline GCN method.

To further validate the generalization ability of our method,
we seek to evaluate our method on the general in-the-wild
datasets [20], [21], [22] which include multi-person group
activity scenarios. However, we find that traditional GCN
methods perform feature modelling for each input person
individually and conduct feature fusion in the late stage. Con-
sequently, they have the limitation of exponentially increasing
computation complexity as the number of individuals grows.
Inspired by [13], we implement a lightweight Instance Pooling
module before the GCN models. The key idea is to aggregate
the features of multiple persons and projects them to a single
skeletal representation in the early stage. By exploiting the
plug-and-play Instance Pooling module, the classification of
group activities can be supported without surging computation
cost. This offers a viable solution for extending GCN-based
skeleton action recognition methods (including our PSE-GCN)
to multi-person scenarios.

In extensive experimental evaluations over the total of seven
datasets [5], [6], [18], [19], [20], [21], [22], our pipeline
consistently achieves the state-of-the-art across all the bench-
marks (see Fig. 1b), demonstrating its superior performance
and robust generalization. We find that strategically employing
fine-grained keypoints enables recognizing intricate human
actions with efficient computation complexity. In summary,
the main contributions of our work are threefold:

e We introduce fine-grained limb details as the Expressive
Keypoints representation for skeleton-based human action

recognition, boosting the performance in identifying intri-
cate cases.

e We propose the Progressive Skeleton Evolution strategy
to highly promote the efficiency of the existing GCN-
based skeleton action recognition methods meanwhile
preserving their accuracy.

e We implement a plug-and-play Instance Pooling module
to extend GCN methods to multi-person group activity
scenarios without surging computation cost.

II. RELATED WORKS
A. Point-Based Action Recognition

Point-based action recognition methods are more robust
against variations of lightning and view variation compared
with RGB-based methods [23], [24], [25], [26], [27], [28].
Some works [8], [9], [10] take numerous unordered 3D point
cloud as input. However, point cloud data introduces too much
redundant information for learning action patterns, leading to
high computation cost. Some works utilize 2D/3D keypoints
[5], [7] to represent skeletal structure of human body, which
commonly referred to as skeleton-based methods. Some CNN-
based methods [29], [30], [31] attempt to project human body
keypoints into multiple 2D pseudo-images to learn useful fea-
tures, which can achieve notable performance. Among them,
GCN-based methods [15], [16], [17], [32], [33], [34], [35] have
been adopted frequently due to the effective representation
for the graph structure [36]. More recently, transformer-
based architectures [37], [38], [39], [40] have emerged as a
competitive paradigm by leveraging self-attention mechanisms
to capture global spatio-temporal dependencies. However,
these methods often require high computational costs due to
the usage of their large-sized attention maps. Nevertheless,
existing skeleton-based methods use coarse-grained skeleton
representation as input, leading to the challenge of discerning
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Fig. 2. Overview of the proposed pipeline. (a) A top-down estimator is used to extract COCO-WholeBody Keypoints from videos, and conduct keypoint
selection based on statistical metrics to remove the redundant facial keypoints, forming our Expressive Keypoints representation. (b) A Progressive Skeleton
Evolution strategy which can be integrated into most GCN methods is presented to efficiently process the Expressive Keypoints. It guides the network to
progressively evolve skeletal structures in groups by re-weighting and downsampling the keypoints. (¢) A Instance Pooling module is implemented to fuse the
multiple instances in the early stage. We use it as an lightweight extension for evaluating our methods in general wild scenarios, which contains multi-person

group activities.

complex actions, which results in limited performance. To this
end, we propose to incorporate hand and foot keypoints into
the body part, forming a fine-grained skeletal structure to better
distinguish the intricate actions.

B. GCNs for Skeleton-Based Action Recognition

STGCN [32] first utilized graph convolution to conduct
skeleton action recognition, GCN-based methods soon became
the mainstream. Different improvements have been made in
recent works [15], [16], [17], [33]. AAGCN [33] proposes
to adaptively learn the topology of graphs instead of setting it
manually. CTRGCN [16] takes a shared topology matrix as the
generic prior for network channels to improve performance.
PYSKL [15] benchmarked representative GCN methods with
good practices. DGSTGCN [17] proposes a lightweight yet
powerful model without a predefined graph. However, tradi-
tional methods commonly face several limitations. First, they
maintain a static skeleton structure with a fixed number of
keypoints, which restricts their ability to capture multi-scale
information. AdaSGN [41] has trained a policy network to
adaptively select from multiple branch networks with differ-
ent scales of skeletal structures, reducing the computational
expenses but also suffering from extremely slow inference
speed. In this work, we propose to dynamically downsample
keypoints progressively in a single branch, achieving efficiency
in both computation cost and inference speed. The second lim-
itation is that previous GCN methods normally cropped input
individuals to a maximum of two because the computation
cost will linearly increase with each additional person. In this

work, we introduce an Instance Pooling module to overcome
the constraints of input individuals.

III. PROPOSED PIPELINE

The overview of our proposed pipeline is depicted in Fig. 2.
In Sec. III-A, we incorporate detailed keypoints of limbs to
coarse-grained body keypoints, forming the representation of
Expressive Keypoints. We elaborate on the collection and
preprocessing of these keypoints, highlighting the benefits
of this approach. In Sec. III-B, we propose the Progressive
Skeleton Evolution strategy to efficiently deal with more limb
keypoints. We find that implicitly aggregating keypoint in
latent space in the network processing can significantly reduce
computational complexity while maintaining high accuracy.
In Sec. III-C, we discover that individual modeling and late
fusion of instance features in traditional methods limit their
scalability in terms of input persons. Therefore, we exploit a
plug-and-play Instance Pooling module for multiple instance
inputs (in Sec. III-C), which supports the recognition of group
activities without surging computational costs.

A. Expressive Keypoints Representation

1) Data Collection: Benefiting from the dense landmarks
provided by COCO-WholeBody [14], which encompasses
133 keypoints, including 17 keypoints for the body, 68 for
the face, 42 for the hands, and 6 for the feet, we have
a base representation for fine-grained skeleton. In practice,
COCO-WholeBody can be extracted from a top-down esti-
mator. We firstly extract human bounding boxes using the
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Fig. 3. Statistical results of whole-body keypoints on the NTU RGB+D dataset. (a) Video variance distribution. (b) Motion variance distribution.

ResNet50-based Faster-RCNN [42]. Subsequently, the COCO-
WholeBody [14] keypoints within specified bounding boxes
are obtained through the pre-trained human pose estimator
[43].

2) Keypoint Selection: We observe directly using COCO-
WholeBody as input not only incurred significant compu-
tational costs but also yielded lower performance, because
there might be numerous redundant keypoints introducing
substantial noise into the model. To alleviate this issue, we
select the input 133 keypoints from two perspectives. First,
COCO-WholeBody not only includes body and detailed hand
keypoints, but also includes face landmarks, which are intu-
itively not related to the human action. Besides, we analyze
two statistical metrics: Video Variance and Motion variance
on the NTU-120 dataset, which calculate the variance of
keypoints for each person and motion frequency of each
keypoint between frames, respectively.

Specifically, (i) Video Variance Var}, calculates the vari-
ance of keypoints for each person across all videos. A lower
value of Var} is indicative of a keypoint distribution that is
more consistent and, consequently, more amenable:

s
Var] = % > is =) (1)
s=1
where S represents number of videos, v;; is mean of i-th joint
positions in each video s, and f,; indicates mean of all v; ;.
(ii) Motion variance Var!", measures the motion frequency
and the range of each keypoint between video frames, where
higher Var!" indicates more obvious movement for human
action recognition.

T-1

ar = for

v Pigs1 — pi,r)2> @)
€; ’

1
T-1
=1
where f, denotes the standard deviation function computed
across videos, p;,+ indicates i-th keypoint position in the #-th
frame, and ¢ is area scale coefficient of different parts, which
is used to normalize the motion variance.

As illustrated in Fig. 3, facial keypoints (23-90th) have
higher video variance and lower motion frequency, which indi-
cates low contribution for action recognition. This observation
guides us to manually remove them.

B. Progressive Skeleton Evolution Strategy

The representation of Expressive Keypoints provides abun-
dant motion cues for skeleton action recognition. However,
directly feeding Expressive Keypoints into existing GCN
methods encounters several limitations. (i) Low efficiency:
Handling with much more limb joints significantly increases
computational complexity compared to the coarse-grained
ones. (ii) Sub-optimal accuracy: The topology graph of
Expressive Keypoints is more complex and has multi-hop con-
nections which hinders the network from effectively exchange
information among distant nodes. Consequently, it faces a
more pronounced long-range dependency problem [34]. We
claim that the key problem is that traditional methods have a
fixed skeleton structure during feed forward.

To this end, we propose a novel Progressive Skeleton
Evolution (PSE) strategy to progressively downsamples the
Expressive Keypoints throughout the processing stages. The
PSE strategy can be seamlessly integrated into most GCN
methods to create our PSE-GCN (e.g baseline: DGSTGCN
[17] — ours: PSE-DGSTGCN) without modifying the inner
implementation of their graph convolutional and temporal
convolutional layers or the high-level architectural design.
What we do is to encapsulating the baseline graph convolu-
tional layers within a proposed Grouped Mapping framework,
where the input keypoint features are divided into groups and
multiplied by the mapping matrices before being processed
by the graph convolutional layers. By strategically exploit
Expressive Keypoints, our PSE-GCN can achieve comparable
or even higher accuracy with much lower GFLOPs compared
with its baseline GCN method.

1) Preliminary and Notations of GCN: The skeleton
sequence X € R/*T*C ig defined by J joints with C dimen-
sion channels at each joint in 7 frames. For most existing
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Fig. 4. The architecture of the proposed Grouped Mapping Framework . To illustrate the internal structure G and 7~ of the framework, we inherit the graph
convolutional layer and the temporal convolutional layer from the baseline model DGSTGCN [17]. However, G and 7 are not limited to this implementation,
most GCN-based methods’ the graph convolutional layer and the temporal convolutional layer can be adopted as G and 7.

GCN-based methods, they share a same architecture design of
M spatial-temporal blocks, where each spatial-temporal block
F contains a graph convolutional layer G and a temporal
convolutional layer 7 to alternately model the spatial and
temporal information. We use B = {1,2,.., M} to denote the
index set of spatial-temporal blocks, which has two subset B”
and BY, where B? contains the indices of downsampling blocks
F¢ that downsample the temporal length and B" contains
the indices of other normal blocks F”. The adjacent martix
A € R7*/ defines the topology links of human skeleton, where
A;; = 1 if i-th joint and j-th joint are physically connected
and O otherwise. The computation of F can be summarized
as:

F(X,A) = T(GX,A) +X, (3)
where A = A + 1 is the skeletal topology graph with added
self-link.

2) Grouped Mapping Framework: To achieve the PSE
strategy for existing GCN methods, we propose the Grouped
Mapping Framework to encapsulate original graph convolu-
tional layers G and temporal convolutional layers 7 of any
GCN methods without modifying their inner design. The
same high-level architecture B = B” U B? is also inherited.
We denote the Grouped Mapping Framework as F and its
detailed architecture is depicted in Fig. 4. Specifically, we
split the channel dimension of the skeleton sequence X into
K groups, thereby reducing the channel width of each feature
group to C/K. Subsequently, each feature group is indepen-
dently multiplied by a corresponding mapping matrix M to
adaptively alter the skeleton structure. Next, we parallelize
K baseline graph convolutional layers {Gy, ..., g} to extract
group-specified features that can greatly enrich the motion
feature representations across diverse structures. Finally, K
group features are concatenated along the channel dimension

and processed by the baseline temporal convolutional layer
T to model the temporal dependency, generating the refined
motion feature. To clearly illustrate the structure of G and T
in Fig. 4, we instantiate them using the graph convolutional
and temporal convolutional layers from our baseline model
DGSTGCN. For more detailed elaboration of DGSTGCN’s
graph and temporal convolutional layers, readers are referred
to the original paper [17]. However, it is important to note that
G and T are flexible and can be substituted with corresponding
modules from other GCN-based methods like [15], [16], and
[32], as our framework is designed to be generally applicable.
The whole processing of our Grouped Mapping Framework F
can be formulated as follows:

FX, A M) = T((G(M Xy, AYW)) + MX, (4)

where k € {1, ..., K} is the index of each group, X; is the k-th
split feature and W is a learnable weights. () is the activation
function. We provide further elaborations of mapping matrix
M subsequently.

Mapping matrix. The main idea of downsampling the
keypoints is achieved by being multiplied with the mapping
matrix MY € R/*/i+1 to fuse correlated joints. It maps the
original skeleton X with J; joints to a new skeleton X’ with
Jiy1 joints, which can be formulated as follows:

X' = MX, )

Once the skeleton structure is downsampled, the new adjacent
matrix can be calculated as follows:

A= MHTAMA. (6)

The downsampling operation is only conduct in the down-
sampling blocks with indices in B?. For the other normal
blocks in B”, the mapping matrix M" € R’/ is defined
as a learnable diagonal matrix that does not downsample the
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Fig. 6. The correspondence between pre-defined keypoint partition and initialized downsampling mapping matrix.

keypoints. It serves to re-weight the skeleton joints, enabling
the network to prioritize important joints by allocating weights
on the diagonal. Considering the index of F and the type of
mapping matrix, Eq.(4) can be detailed as follows:

L YT (o(IGMV Xy, A)IW) + X, i€B", o
O )T (UG MEX, ATIW) + MUX, i e B,
Pre-defined keypoint partition. The downsampling pro-
cess of skeleton structures follows the pre-defined keypoint
partitioning, as shown in Fig. 5. The joints are downsampled
from 65 to 27, then to 11. Inspired by the idea that adjacent
areas have similar semantics for human action, We initially
define the keypoint partitioning based on the hierarchical
skeletal structure of Expressive Keypoints. It guides the initial-
ization of the downsampling mapping matrix M?. To facilitate
understanding, Fig. 6 uses a simulated example to demonstrate
the pre-defined keypoint partition from V; to Vi, and its
corresponding downsampling matrix. As shown in the figure,
the original V; = 5 joints are partitioned into three parts
{Pj}jei12....vip) and merge N; nodes within each part P; to
yield a new skeletal structure with V;;; = 3 joints. Once the
partitioning is determined, the initialized downsampling matrix

M? can be formulated as follows:

—, i€ P],
N, 3
0, otherwise.

d _
MY, =

The partition operations are semantically guided, ensuring that
the partitioned nodes and their corresponding parts share the
same semantic meaning (the semantically related nodes like
big toe, little toe, and heel are grouped as one part).

3) Overall Architecture of Our PSE-GCN: Three rep-
resentative GCN methods are adopted to be our baseline
model, which are STGCN++, CTRGCN, DGSTGCN. All
these models share the same high-level design. We apply the
PSE strategy to form our corresponding PSE-GCN, which
are PSE-STGCN++, PSE-CTRGCN, and PSE-DGSTGCN,
respectively.

The integration of the PSE strategy is seamless, thus the
same overall architecture is inherited. Which includes 10
spatial-temporal blocks (bl1~b10), and the output channels
(number of features) for each block are configured as 64, 64,
64, 64, 128, 128, 128, 256, 256, and 256, respectively. The 5Sth
and 8th blocks (b5, b8) are downsampling blocks, while the
other blocks are normal blocks. In each downsampling block,
the groups expand at a factor of 2, and the number of joints
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is downsampled from 65 to 27 to 11. Through a 2D Avg-
Pooling, the temporal and joint dimensions are eliminated and
the output is used by the classifier to predict a score vector
for video-level action recognition.

C. Instance Pooling Module

The computation of previous GCN-based works scale lin-
early with the increasing number of persons in the video,
making it less efficient for group activity recognition. The key
problem is that traditional methods independently model each
person’s skeleton sequence and then perform feature fusion at
the late stage.

To tackle this problem, we implement an plug-and-play
Instance Pooling (IP) module which performs early feature
fusion of the multiple input skeletons before feeding them to
GCN. As shown in Fig. 7, we obtain the keypoint embedding
via utilizing a fully connected layer and a keypoint positional
encoding from the multi-person skeletal sequences. Subse-
quently, the Concat Pool Layer P.(-) and the Group Pool Layer
Pg() exploited by [13] are adopted to aggregate I instance-
wise feature vectors. Where this process can be formulated
as:

Y’ = Py(o(Pe(Y) + Y)), €))

where Y = emb({X;,Xo,....X ) € RIXIXTXC s multi-
person skeletal features, the emb(-) represents a positional
embedding applied to the joint dimension. These positional
embeddings are initialized as random values sampled from a
normal distribution and will be optimized during training. Y’ €
R/XT*C s the aggregated single-person representation where
the dimension of instance I has been eliminated. Through
early fusion in the lightweight IP module, the computationally
burdensome spatial-temporal modeling will be conducted only
once in the subsequent GCN, regardless of the number of input
instances. The IP module serves as a flexible and lightweight
extension for any GCN-based methods (including our PSE-
GCN). It offers a practical and efficient solution for extending
GCN-based skeleton action recognition to multi-person group
activity scenarios without surging computation cost.

IV. EXPERIMENTS

We conduct comprehensive experiments to evaluate our
proposed pipeline over seven datasets, including NTU-60 [5],
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NTU-120 [6], PKU-MMD [18], N-UCLA [19], Volleyball
[44], Kinetics-400 [20], UCF-101 [21], and HMDB-51 [22].
We report Top-1 accuracy to evaluate model’s recognition
performance, and report floating point operations (FLOPs) and
number of parameters (Params.) to evaluate model’s efficiency
in terms of computation cost and model size.

A. Datasets

NTU-60 and NTU-120 can be can be collectively referred
to as NTU RGB+D, which is currently the largest dataset
for skeleton human action recognition. The NTU-60 dataset
contains 56,880 videos of 60 human actions. The authors of
this dataset recommend two split protocols: CS and cross-view
(CV). The NTU-120 dataset is a superset of NTU-60 and con-
tains a total of 113,945 samples over 120 classes. The authors
of this dataset recommend two split protocols: cross-subject
(CS) and cross-set (CX). We conduct experiments on NTU-60
and NTU-120 following those recommended protocols.

PKU-MMD dataset is originally proposed for action detec-
tion. For the action recognition task, we crop long videos to
get short clips based on the temporal annotations following
[45]. The PKU-MMD has two versions: PKU-MMD I (PKU-
I) dataset and PKU-MMD II (PKU-II) dataset, with nearly
20,000 action instances over 51 classes and 7,000 action
instances over 41 classes, respectively. We follow the recom-
mended CS split protocol for training and testing.

Volleyball is a group activity recognition dataset with
4830 videos of 8 group activity classes. Each frame contains
approximately 12 persons, while only the center frame has
annotations for GT person boxes. We use tracking boxes from
[46] for pose extraction.

N-UCLA contains 1494 video clips covering 10 action
categories, which are performed by 10 different subjects. It
has the most various significant variations in viewpoint and
severe occlusions. We follow the same evaluation protocol in
[16].

Kinetics-400, UCF-101, and HMDB-51 are general action
recognition datasets collect from web. With the incorporation
of the Instance Pooling module, we have extended our pipeline
to these in-the-wild datasets. The Kinetics-400 is a large-scale
video dataset with 300,000 videos and 400 action classes.
The UCF-101 dataset comprises approximately 13,000 videos
sourced from YouTube, categorized into 101 action labels. The
HMDB-51 consists of around 6,700 videos with 51 actions.

B. Implementation Details

1) Hyperparameters: Following the good practices of
PYSKL [15], we use the same hyperparameter setting for
all GCN models to ensure fair comparison. Specifically, we
employ the Stochastic Gradient Descent with a Nesterov
momentum of 0.9 and weight decay of 0.0005. When training
from scratch, the initial learning rate is set to 0.1, and we
train all models for 120 epochs with the Cosine Annealing
LR scheduler. On the UCF-101 and HMDB-51 datasets, we
fine-tune all models based on the Kinetics-400 pretrained
weights for 120 epochs with a initial learning rate of 0.01,
which will decay with a factor 0.1 at epoch 90 and 110. The
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TABLE I
HYPERPARAMETERS AND AUGMENTATION OF EACH DATASET DURING TRAINING

| NTU-RGB+D PKU-MMD N-UCLA Volleyball Kinetics-400 UCF-101 HMDB-51
Optimizer Stochastic Gradient Descent
Number of epochs 120
Number of persons 2 2 1 12 10 10 10
Temporal length 100 100 50 100 100 100 100
Batch size 128 64 16 64 128 64 64
Pretraining dataset None None None None None Kinetics-400 Kinetics-400
Learning rate 0.1 0.01
Scheduler Cosine Annealing Step [90, 110]
Weight decay 0.0005
Momentum Nesterov, 0.9
Random scaling None [0.85, 1.15]
Random cropping None [0.56, 1.00]
Random flipping None 0.5
Temporal sampling Uniform Sampling

Acc (%)

@ NTU Keypoints
@ Expressive Keypoints

Fig. 8. The classification accuracy distribution of 120 actions in NTU RGB+D datasets. The orange volume represents the accuracy when trained on the
NTU Keypoints, the red volume represents the accuracy when trained on our Expressive Keypoints.
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Fig. 9. Comparison of Top-20 hard cases. The gray bars denote the accuracy on the coarse-grained NTU Keypoints, the orange bars denote the improved
accuracy when incorporating limb details to form our fine-grained Expressive Keypoints representation.

hyperparameters of batch size, temporal length, and number
of input persons employed for each datasets are listed in
Tab. I. We use zero-padding or cropping for each video to
satisfy the fixed number of input persons. Our models are
implemented with the PyTorch deep learning framework. All
the experiments are conduct on a single Linux server with four
RTX 3090 GPUs for distributed training and testing.

2) Data Augmentation: Uniform Sampling [29] is adopted
as a strong temporal augmentation strategy, which evenly
partitions the original skeleton sequence into 7 splits and
randomly extracts one frame from each split to form a clip of
length T. On the NTU RGB+D, PKU-MMD, and N-UCLA
datasets, no spatial augmentation is utilized for processing
2D Expressive Keypoints. On the Kinetics-400, UCF-101,
and HMDB-51 datasets, we employ substantial spatial data
augmentations, e.g. random scaling, cropping, and flipping the

keypoints. Detailed augmentation for each datasets are listed
in Tab. I.

C. Effectiveness of Proposed Components

We conduct evaluations for testing the effectiveness of every
component in our proposed pipeline, which including the
Expressive Keypoints representation, the PSE strategy, and the
IP module.

1) Expressive Keypoints Representation: On NTU-120, we
directly feed Expressive Keypoints into three representative
GCN methods, which are STGCN++ [15], CTRGCN [16],
and DGSTGCN [17]. As shown in Tab. II, the Expressive
Keypoints representation significantly enhances action recog-
nition performance on all three baseline networks (+ 7.8%,
+ 8.6%, + 6.5%, respectively). To provide more granular
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TABLE I
EFFECTIVENESS OF PSE STRATEGY ON EXPRESSIVE KEYPOINTS

Method Format CS(%) CX(%) FLOPs
STGCN++ NTU Keypoints 84.3 86.7 2.7G
STGCN++ Expressive Keypoints ~ 92.6 +83  94.5 +78  6.9G
PSE-STGCN++ Expressive Keypoints ~ 92.7 94.5 2.6G -4.3
CTRGCN NTU Keypoints 84.0 85.9 2.7G
CTRGCN Expressive Keypoints ~ 92.8 +88  94.5 +86  7.5G
PSE-CTRGCN Expressive Keypoints ~ 92.8 94.7 2.5G 5.0
DGSTGCN NTU Keypoints 85.7 87.9 24G
DGSTGCN Expressive Keypoints  92.6 +6.9 944 +65 6.3G
PSE-DGSTGCN  Expressive Keypoints ~ 93.1 94.8 2.4G -39

TABLE III
EFFECTIVENESS OF PSE STRATEGY ON NTU KEYPOINTS

Format Method CS(%) CX(%) FLOPs
STGCN++ 84.3 86.7 271G
PSE-STGCN++ 84.9 86.7 1.5G -1.2

Kel;j[;r()[ijnts CTRGCN 84.0 85.9 217G
PSE-CTRGCN 84.1 86.4 1.5G -1.2
DGSTGCN 85.7 87.9 24G
PSE-DGSTGCN 85.7 87.8 1.5G -0.9

~—&—w/o IP module

w/ IP module
16.0

14.0
12.0
10.0

8.0

FLPOs (G)

6.0
4.0
2.0

0.0
1 2 3 4 5 6 7 8 9 10 11 12

Number of Input Persons

Fig. 10. Ablation study on the IP module with respect to the input
person numbers. The FLOPs increases linearly with person number increasing
without the IP module. While the FLOPs hardly increases with the IP module.

insights into the performance improvements, Fig. 8 illus-
trates the classification accuracy distribution across 120 action
labels using both NTU Keypoints representation and Expres-
sive Keypoints representation on the NTU RGB+D dataset,
demonstrating that our Expressive Keypoints representation
consistently outperforms the coarse-grained representation.
Furthermore, from these 120 categories, we extract the Top-
20 hard cases (ranked by accuracy from low to high), which
primarily involve fine-grained actions requiring subtle limb
movement discrimination—such as Reading vs. Writing and
make ok sign vs. make victory sign. When incorporating
detailed limb keypoints by Expressive Keypoints, the action
recognition performance substantially improves, particularly
for those challenging actions with nuanced limb movements,
as demonstrated in Fig. 9.

2) PSE Strategy: Building upon the strong baseline per-
formance achieved with Expressive Keypoints, we further
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TABLE IV
EFFECTIVENESS OF IP MODULE
Dataset Method Input persons  Accuracy(%) FLOPs
w/o IP module 2 44.1 2.4G
w/o IP module 5 49.6 6.1G
HMDB-51 w/o IP module 10 OOM 12.2G
w/ TP module 10 51.6 1.8G
w/o IP module 2 37.2 2.4G
Vollevball w/o TP module 5 63.7 6.1G
Y wio IP module 12 0oOM 147G
w/ IP module 12 88.3 2.0G
TABLE V
ABLATION STUDY ON INPUT KEYPOINT SELECTION
Protocol Config of V' N Accuracy(%) FLOPs
#1 COCO-WholeBody 133 93.4 12.8G
#2 #1+w/o face 65 94.4 6.3G
#3 #2+wlo feet 59 94.1 5.8G
#4 #2+simple fingers 35 90.6 3.4G
#5 #2+w/o hands 23 88.0 2.4G
#6 #2+0urs: PSE 65 94.8 24G
TABLE VI

ABLATION STUDY ON THE GROUP CONFIGURATION

Ko c Config of K Accuracy(%)
1 1 (1, 1, 1] 93.1
2 1 [2,2,2] 93.8
4 1 [4, 4, 4] 93.5
1 2 [1, 2, 4] 94.8
2 2 [2, 4, 8] 94.1
1 4 [1, 4,16] 93.9

integrate the proposed PSE strategy into the previous baseline
GCN methods to form our PSE-GCN models, which are
PSE-STGCN++, PSE-CTRGCN, and PSE-DGSTGCN. By
progressively downsampling the Expressive Keypoints, three
baseline models applying PSE strategy significantly reduce
more than half of the computation cost (—4.3G, —5.0G, —3.9G)
while achieving comparable or even higher accuracy, as shown
in Tab. II. To provide a more complete evaluation, we also
evaluate the effectiveness of PSE strategy with NTU Keypoints
input. This additional evaluation serves to verify whether the
benefits of PSE are specific to Expressive Keypoints or can
be generalized to traditional coarse-grained skeletal represen-
tations. As shown in Tab. III, PSE strategy can greatly reduce
the computation cost (from 2.4G~2.7G to 1.5G) of processing
coarse-grained skeletal data while preserving accuracy. It can
be observed that a slight accuracy drop occurs in one of the
six settings. We consider this is because the coarse-grained
skeletal representation is already very concise, and further
downsampling might result in under-represented features.
Nevertheless, the overall results confirm that PSE strategy
maintains competitive performance while offering substantial
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TABLE VII

WE BENCHMARK GCN SKELETON-BASED ACTION RECOGNITION METHODS ON THE NTU-60 DATASET. THE WEIGHTS ASSIGNED TO COMPONENTS
OF 25-FUSION AND 4S-FUSION ARE [1:1] AND [3:3:2:2], RESPECTIVELY

Method | NTU-60 CS | NTU-60 CV | Efficiency
| Joint(%)  Bone(%) 25(%) 4s(%) | Joint(%)  Bone(%) 2s(%) 4s(%) | FLOPs  Params
STGCN++ 95.6 95.8 96.5 96.8 99.1 98.9 99.4 99.5 6.9G 1.4M
PSE-STGCN++ 95.7 95.9 96.6 97.0 99.1 99.0 99.4 99.5 2.6G 1.2M
CTRGCN 95.8 96.2 96.7 96.9 99.0 99.0 994 99.5 7.5G 1.4M
PSE-CTRGCN 96.0 96.2 97.0 97.1 99.2 99.0 99.5 99.5 2.5G 1.1M
DGSTGCN 95.1 95.8 96.6 96.9 99.3 99.1 99.5 99.6 6.3G 1.6M
PSE-DGSTGCN 95.8 96.0 96.7 97.0 99.3 99.1 99.5 99.6 24G 1.3M
TABLE VIII

WE BENCHMARK GCN SKELETON-BASED ACTION RECOGNITION METHODS ON THE NTU-120 DATASET. THE WEIGHTS ASSIGNED TO COMPONENTS
OF 2S-FUSION AND 4S-FUSION ARE [1:1] AND [3:3:2:2], RESPECTIVELY

‘ NTU-120 CS ‘ NTU-120 CX ‘ Efficiency
Method
| Joint(%)  Bone(%) 25(%) 4s(%) | Joint(%)  Bone(%) 25(%) 4s(%) | FLOPs  Params

STGCN++ 92.6 92.6 94.0 94.3 94.5 94.6 95.8 96.1 6.9G 1.4M
PSE-STGCN++ 92.7 92.6 94.1 94.5 94.5 94.9 95.9 96.3 2.6G 1.2M
CTRGCN 92.8 92.7 94.0 94.3 94.5 94.8 95.9 96.3 7.5G 1.4M
PSE-CTRGCN 92.8 92.9 94.1 94.5 94.7 94.9 95.9 96.3 2.5G 1.IM
DGSTGCN 92.6 92.8 94.1 94.3 94.4 95.1 96.0 96.1 6.3G 1.6M
PSE-DGSTGCN 93.1 92.8 94.3 94.6 94.8 95.1 96.0 96.4 24G 1.3M

computational savings across different input representations
and model architectures.

3) IP Module: To validate the effectiveness of the IP
module, we conducted comprehensive ablation studies on both
HMDB-51 and Volleyball datasets using PSE-DGSTGCN to
evaluate computation costs and accuracy with/without the IP
module. The results are presented in Tab. IV. HMDB-51
dataset primarily contains single-person actions, but some cat-
egories could involve multiple human interactions in crowded
scenes. Without the IP module, we tested with 2, 5, and
10 input persons. The results show that recognition accuracy
gradually improved with more input persons (from 44.1% to
49.6%), but at the cost of exponentially increasing FLOPs
(from 2.4G to 12.2G), eventually causing Out-Of-Memory
(OOM) errors at 10 persons. After implementing the IP
module, it achieves the highest accuracy of 51.6% while dra-
matically reducing computational costs to just 1.8G FLOPs for
10-person inputs. To further verify the module’s robustness,
we evaluate on the specialized group activity dataset Volley-
ball, which contains 12-person volleyball matches. Without IP,
using only 2 or 5 persons yields poor accuracy (37.2% and
63.7% respectively) as critical interacting players are often
cropped out. While full 12-person inputs could capture all
interactions, they cause OOM errors due to excessive compu-
tation (14.7G FLOPs). Incorporating IP module successfully
resolved this limitation, enabling 12-person processing at
merely 2.0G FLOPs while achieving the best accuracy of
88.3%. Moreover, Fig. 10 illustrates the variation in FLOPs
with the number of input presons. Without the IP module,
the computation cost escalates rapidly as the number of

individuals increases due to the substantial feature modeling
required for each individual in the traditional GCN pipeline.
However, with the inclusion of the IP module, the increase in
FLOPs is minimal since the features of multiple individuals
are aggregated into a single representation by the lightweight
IP module before fed into the subsequent GCN model.

D. Configuration Exploration

1) Input Keypoints Selection: We extensively explore the
selection of initial input keypoints. As shown in Tab. V,
experimental results demonstrate that removing facial key-
points from the COCO-WholeBody Keypoints (protocol #1)
to form our Expressive Keypoints (protocol #2) is reasonable
and aligns with the statistical analysis. Removing redundant
points reduces the impact of introduced noise, resulting in
higher accuracy with lower computation cost. Based on the
Expressive Keypoints, we try to further prune some keypoints.
It is noticeable that removing the keypoints of limbs in a
explicit way can achieve a decrease in FLOPs, but also incurs
an equivalent drop in accuracy (protocol #3~#5, simple fingers
mean only one keypoint is retained for each finger). We argue
that it is not applicable for explicitly selecting detailed limb
keypoints in various actions of large-scale datasets. That is
why we adopt a learning-based method, i.e. the PSE strategy,
for the implicit selection from Expressive Keypoints (protocol
#6), achieving great saving in FLOPs meanwhile maintaining
high accuracy.

2) Group Design: Tab. VI presents six different config-
urations based on the initial number of groups Ky and the
group expansion factor c. It is noticeable that the static group
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TABLE IX
ACCURACY AND EFFICIENCY COMPARISON WITH OTHER STATE-OF-THE-ART METHODS ON NTU-60 AND NTU-120 DATASETS

Method Modality NTU-60 NTU-120 Efficiency
CS(%) CV(%) CS(%) CX(%) FLOPs Params.
13D [24] RGB — — 77.0 80.1 107.9G 12.1M
GlimpseClouds [47] RGB 86.6 932 — — 168.0G  46.8M
VPN++ [48] RGB 91.9 94.9 86.7 89.3 112.1G 14.0M
RGBPose-Conv3D (RGB) [29] RGB 95.1 — — — 41.8G 31.6M
P4Transformer [8] Point cloud 90.2 96.4 86.4 93.5 40.4G 44.1M
PSTNet [9] Point cloud 90.5 96.5 87.0 93.8 54.1G 8.4M
PST-Transformer [10] Point cloud 91.0 96.4 87.5 94.0 48.8G 44.2M
PoseConv3D [29] Skeleton 94.1 96.9 86.9 90.3 20.9G 4.0M
DSTA-Net [37] Skeleton 91.5 96.4 86.6 89.0 64.7G 13.8M
Hyperformer [38] Skeleton 92.9 96.5 89.9 91.3 38.6G 10.8M
Skateformer [39] Skeleton 93.5 97.8 89.8 91.4 14.5G 8.1M
STGCN [32] Skeleton 90.7 96.5 86.2 88.4 21.4G 12.3M
AAGCN [33] Skeleton 91.5 96.7 86.9 88.8 24.3G 15.1M
ShiftGCN [49] Skeleton 90.7 96.5 85.9 87.6 10.0G 2.8M
MSG3D [50] Skeleton 91.7 96.9 87.9 89.6 41.1G 12.7M
STGCN++ [15] Skeleton 92.1 97.0 87.5 89.8 10.6G 5.5M
CTRGCN [16] Skeleton 92.1 97.0 88.1 89.9 10.8G 5.6M
DGSTGCN [17] Skeleton 93.2 97.5 89.6 91.4 9.6G 6.6M
SelfGCN [51] Skeleton 93.1 96.6 89.4 91.0 10.0G 10.7M
InfoGCN [52] Skeleton 93.0 97.1 89.8 91.2 10.0G 9.4M
HDGCN [34] Skeleton 93.4 97.2 90.1 91.6 9.6G 10.1M
DeGCN [53] Skeleton 93.6 97.4 91.7 92.1 9.7G 5.6M
Ours: Baseline* Skeleton(+limb details) 96.9 99.6 94.3 96.1 25.0G 6.6M
Ours: PSE* Skeleton(+limb details) 97.0 99.6 94.6 96.4 9.6G 5.2M

designs (¢ = 1) yield sub-optimal performances across the
tested settings. In contrast, the expanding group designs, where
the number of groups increases layer by layer, demonstrate a
clear performance advantage. Among these, the configuration
with a group sequence of [1, 2, 4] achieves the best accuracy,
indicating that a moderate and progressive increase in group
granularity is beneficial. We hypothesize that this is because
excessive grouping leads to a reduction in the number of
channels per group, which in turn weakens the feature rep-
resentation capability of each group. Thus, a balanced group
expansion strategy is essential to ensure both diversity and
sufficient representation capacity.

E. Benchmarking GCN Methods on Expressive Keypoints

With the fine-grained human body representations provided
by Expressive Keypoints, most GCN methods can significantly
enhance accuracy by simply adjusting the input keypoints.
Our proposed Progressive Skeleton Evolution (PSE) strategy
can be applied to these methods, forming our PSE-GCN
models, which achieves comparable or even higher accu-
racy with substantially lower computation cost. We conduct
a comprehensive benchmark on the NTU-60 and NTU-120
datasets for three representative GCN methods: STGCN++
[15], CTRGCN [16], and DGSTGCN [17] with Expressive
Keypoints as input, as well as their PSE-GCN counterparts:
PSE-STGCN++, PSE-CTRGCN, and PSE-DGSTGCN. We

measure the Top-1 accuracy of joint-stream (Joint), bone-
stream (Bone), two-stream fusion (2s) [60], and four-stream
fusion (4s) [33]. As shown in Tab. VII and Tab. VIII, our
PSE methods obtain better performance and efficiency than
baselines in terms of Top-1 accuracy, FLOPs, and number of
parameters.

F. Comparison With the State-of-the-Art

According to Sec. IV-E, among three representative graph
convolutional networks [15], [16], [17], we choose the best
performed DGSTGCN [17] with Expressive Keypoints input
as the strongest baseline method (denoted as Qurs: Baseline),
and apply PSE strategy to form our PSE-DGSTGCN (denoted
as Ours: PSE), to make comparison with the state-of-the-
art (SOTA). In experiments, we report the four-stream fusion
results similar to the previous works [15], [16], [17], [33]. The
marker * indicates using Expressive Keypoints.

On NTU-60 and NTU-120, as shown in Tab. IX, Expressive
Keypoints greatly improves the accuracy for skeleton-based
action recognition, even surpassing the SOTA point cloud-
based [10] and RGB-based methods [29]. Upon applying the
PSE strategy, our method achieves significant savings in the
computation cost (25.0G — 9.6G), with comparable or even
higher accuracy.

On N-UCLA, as showed in Tab. X, our method achieves
97.6% Top-1 accuracy, which also surpasses the previous
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TABLE X
PERFORMANCE COMPARISON ON THE N-UCLA DATASETS

Method N-UCLA(%)
ShiftGCN [49] 94.6
CTRGCN [16] 96.5
InfoGCN [52] 97.0
HDGCN [34] 97.2
DeGCN [53] 97.2
Ours: PSE* 97.6

TABLE XI
PERFORMANCE COMPARISON ON THE PKU-I AND PKU-IT DATASETS

Method PKU-1(%) PKU-II(%)
ISC [45] 80.9 36.0
CPM [54] 88.8 48.3
Eqg-Contrast [55] 91.7
MAMP [56] 92.2 53.8
SRNet [57] 93.1 —_—
Ours: PSE* 98.4 83.8
TABLE XII

PERFORMANCE COMPARISON ON THE KINETICS-400 DATASET

Method Kinetics-400(%)
STGCN [32] 30.7
MSG3D [50] 38.0
HDGCN [34] 40.9
PoseConv3D [29] 47.7
SKP [13] (w/o objects) 50.3
SKP [13] (w/ objects) 52.3
Ours: PSE +IP* 53.1

best method [34]. Notably, among the standard skeleton-
based datasets, N-UCLA has the most significant variations in
viewpoint and severe occlusions. Despite being limited by the
estimated 2D representation that is unable to leverage the depth
information and 3D spatial augmentations (e.g. 3D random
rotation), our approach still obtains a promising performance.

On PKU-MMD, Tab. XI shows that our method surpasses
the existing skeleton-based methods by a noticeable margin,
achieving the state-of-the-art performance on both the datasets
of PKU-I and PKU-II, with the Top-1 accuracy achieves to
98.4% and 83.8%, respectively.

We further extending PSE-DGSTGCN with the IP module
(denoted as Ours: PSE +IP), which allows for evaluating our
method on the more general in-the-wild action recognition
datasets [20], [21], [22]. For Kinetic-400 that encompass
many human-object interaction scenarios, such as peeling
apples and peeling potatoes, the accuracy of pure skeleton-
based methods on the Kinetic-400 is far below than other
datasets since they lack of capturing object information. As
a result, SKP [13] resorts to incorporating object contours
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TABLE XIII
PERFORMANCE COMPARISON ON THE UCF-101 AND HMDB-51
DATASETS
Kinetics-400 UCF-101 HMDB-51

Method Pretraining (%) (%)
Potion [58] X 65.2 43.7
PA3D [59] X —_— 55.3
PoseConv3D [29] X 79.1 58.6
Ours: PSE +IP* X 82.5 60.1
PoseConv3D [29] v 87.0 69.3
SKP [13] v 87.8 70.9
Ours: PSE +IP* v 88.7 74.6

and improves the accuracy of keypoint-based benchmark to
52.3%. However, as showed in Tab. XII, by strategically
utilizing Expressive Keypoints, our method achieves the SOTA
performance (53.1%) on the Kinetics-400 dataset even without
the object information. This is made possible through our
expressive skeletal representation and effective PSE strategy,
demonstrating the effectiveness of our pipeline even under
these challenging conditions.

Moreover, we provide an apple-to-apple comparison on
UCF-101 and HMDB-51. As demonstrated in Tab. XIII, our
method consistently surpasses the previous skeleton-based
SOTA methods [13], [29] regardless of whether pre-training
is conducted on the Kinetics-400 dataset or not.

Further Comparison with the Multi-Modality Methods.
Across three standard skeleton action recognition datasets,
including NTU RGB+D [5], [6], PKU-MMD [18], and
N-UCLA [19], our method not only surpasses all the skeleton-
based action recognition methods but also achieves the
best performance among all the single-modality methods
(RGB-based, point cloud-based). To further demonstrate the
superiority of strategically employing Expressive Keypoints,
we compare our method with the SOTA multi-modality meth-
ods. It can be observed that on the NTU-60 and NTU-120
datasets (Tab. XIV), we achieve comparable performance to
the SOTA multi-modality method RGBPose-Conv3D [29] in
three out of four evaluation protocols. On the PKU-MMD
dataset (Tab. XV) and the N-UCLA dataset (Tab. XVI), our
method outperforms the SOTA multi-modality method [63].

The experimental results demonstrate that our method,
despite being based on a single-modality skeleton input,
achieves comparable or even higher performance with a
lightweight computation cost than multi-modality methods.
This remarkable result primarily stems from introducing fine-
grained limb details to the skeleton and employing a PSE
strategy for effective feature modeling, providing a promising
solution for the community.

V. LIMITATION

In brief, our method mainly has two limitations. (i)
Although we extend our method to in-the-wild scenarios
by using the Instance Pooling module, it still struggles to
distinguish certain scene-based human actions or human-
object interactions due to the lack of capturing objects and
scenes. Overcoming this limitation likely necessitates moving
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TABLE XIV

PERFORMANCE COMPARISON WITH THE SOTA MULTI-MODALITY METHODS ON THE NTU-60 AND NTU-120 DATASETS. S, R, AND D DENOTE
SKELETON, RGB, AND DEPTH, RESPECTIVELY

Method Modalities NTU-60 NTU-120
CS(%) CV(%) CS(%) CX(%)
STAR-Transformer [61] S+R 92.0 96.5 90.3 92.7
VPN++ [48] (w/ 3D Poses) S+R 94.9 98.1 90.7 92.5
HCMEN [62] S+R+D 95.2 98.0 89.9 92.7
MMNet [63] S+R 96.0 98.8 92.9 94.4
RGBPose-Conv3D [29] S+R 97.0 99.6 95.3 96.4
Ours: PSE* S 97.0 99.6 94.6 96.4
TABLE XV REFERENCES

PERFORMANCE COMPARISON WITH THE SOTA MULTI-MODALITY METH-
oDS ON PKU-MMD. S AND R DENOTE SKELETON AND RGB

Method Modalities PKU-MMD(%)
TSMF [64] S+R 95.8
MMNet [63] S +R 97.4
Ours: PSE* S 98.4

TABLE XVI

PERFORMANCE COMPARISON WITH THE SOTA MULTI-MODALITY METH-
ODS ON N-UCLA. S AND R DENOTE SKELETON AND RGB

Method Modalities N-UCLA(%)
VPN++ [48] S+R 93.5
MMNet [63] S +R 93.7
Ours: PSE* S 97.6

towards multi-modal approaches. Promising directions include
fusing skeleton data with RGB or object features, potentially
leveraging techniques for employing cross-modality correla-
tion [65] or distillation [66], [67] to transfer knowledge from
richer modalities to the skeleton stream. (ii) Acquiring high-
quality annotations, especially for fine-grained keypoints under
occlusion or for complex interactions, remains challenging.
Exploring semi-supervised [68] or weakly-supervised [69]
paradigms, could help mitigate the annotation cost barrier.

VI. CONCLUSION

In this work, we propose the Progressive Skeleton Evolution
strategy using the Expressive Keypoints representation to
obtain high performance in discriminating detailed actions
while maintaining the high efficiency. Furthermore, we explore
an Instance Pooling module, expanding the applicability of
GCN-based methods to multi-person scenarios. Comprehen-
sive experiments over seven datasets demonstrate our pipeline
has superior performance and robust generalization.
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